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Abstract

In the present paper, the seismic response of a large underground hydropower plant, which is located in southeast

China, is investigated and a high performance recursive procedure based on the damping-solvent extraction method

(DSE) is proposed for the study of the dynamic stiffness matrix of unbounded rock medium. An analytical formula for

the derivative of the dynamic stiffness matrix of unbounded medium with respect to frequency is given, which can

reduce the computational cost for a specified frequency. Then a recursive procedure is derived to converse the solving of

the inverse matrix at a series of frequencies to step-by-step matrices multiplication, which can reduce the computational

cost dramatically. The proposed procedure incorporated with substructure method is implemented in a finite element

code for the dynamic analysis of a large three-dimensional underground hydropower plant caverns subjected to seismic

excitation. Numerical tests on several representative unbounded domain wave problems demonstrate excellent accuracy

and efficiency.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The seismic response analysis of underground structures is very complicated and difficult because of the

unbounded medium–structure dynamic interaction and the uncertainty of earthquake excitation, especially

for large scale underground caverns of hydroelectric power stations. The constraints and radiation damping

of the unbounded medium have great effects on the seismic response of underground structures.

Required in the substructure method for the earthquake analysis of large three-dimensional under-

ground caverns is the impedance matrix (or the frequency-dependant dynamic stiffness matrix) for the

unbounded rock medium region, which is defined at the nodal points on the rock-structure interface. But
the influence of the unbounded rock medium on underground structures is a difficult problem for the
* Corresponding author. Tel.: +86-411-4707541; fax: +86-411-4674141.

E-mail addresses: eerd001@dlut.edu.cn, lijng7402@sohu.com (J. Li).

0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijsolstr.2004.01.023

mail to: eerd001@dlut.edu.cn,


3082 J. Chen et al. / International Journal of Solids and Structures 41 (2004) 3081–3094
dynamic rock-structure interaction analysis. Up to now, the computation of the impedance of unbounded

medium has been the subject of many investigations over past years and a variety of analysis techniques are

proposed, such as the frequency domain BEM used by Stamos and Beskos (1995), dynamic infinite element

by Zhao and Valliappan (1993), periodic infinite solid element by Chow and Smith (1981), cloning method
by Dasgupta (1982), transmitting boundary by Werkle (1987) and many other methods. The study by Wolf

and his cooperators, including recursive method in time domain (Wolf and Motosaka, 1989), finite element

multi-cell cloning method (Wolf and Song, 1994b), consistent infinitesimal finite-element cell method (Wolf

and Song, 1994a), forecasting method (Wolf and Song, 1995), damping-solvent extraction method (Wolf

and Song, 1996) etc., have helped to the development of comprehension of physical essence and compu-

tation methods on dynamic soil–structure interaction analysis. More general address on the dynamic

analysis of underground structures can be found in the paper by Stamos and Beskos (1995). But few

methods is widely accepted in engineering practice because of the complication and high computational
cost induced by the determination of the dynamic stiffness matrix of the unbounded medium. Dependence

on frequency leads to the determination of the dynamic stiffness matrix of the unbounded medium at a

serial of discretized frequencies in frequency domain or the convolution integrals in time domain.

Among all these methods, the so-called damping-solvent extraction method (DSE), refined as discussed

in this paper, can be easily accepted and implemented because of conceptual conciseness and programming

simplicity. In addition, it is suitable to be applied to any complex geological or geographic conditions, such

as the canyon rock condition in which located many high dams in south-west China, while some other

methods have strict restrictions on element geometry or material composition that would cause some
difficulties in application.

The purpose of this paper is to present a general, efficient numerical method to determine the dynamic

response of the unbounded medium–structure system based on refined DSE Method.

Firstly, an analytical formula for the computation of the derivative of the dynamic stiffness matrix of

unbounded medium with respect to frequency is suggested, which cost only one third computational efforts

for a specified frequency of that by the difference method (Wolf and Song, 1996).

Then an iterative approach (or transfer matrix approach) is proposed for the inverse matrix evaluation.

This is the key point for the whole refined procedure, which makes use of the property that the product of
the reverse matrix of stiffness with the mass matrix is a very small quantity. By comparison with the direct

method, the decomposition of the complex matrix is avoided which contributes a great to the computa-

tional cost.

And at last, a recursive procedure is put up for the determination of dynamic stiffness matrix of un-

bounded wall rock at a series of frequencies, which can start from any specific frequency of interested.

The numerical test and the application of the proposed procedure to large underground power plants is

presented. The results show that the proposed procedure has better accuracy and lower cost in computing

the dynamic stiffness of the wall rocks compared to existing methods, and in the current engineering design
practice of underground structures in seismic active area, the present method can greatly simplify com-

putation and improve the efficiency.
2. Impedance of unbounded medium

In the substructure method for the unbounded medium–structure dynamic interaction analysis, the effect

of the unbounded medium on the underground structures can be expressed as the interaction force acted on
the unbounded medium–structure interface. In the frequency domain it can be expressed as (Wolf and

Song, 1996)
RðxÞ ¼ S1ðxÞ � uðxÞ ð1Þ
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In which R is the interaction force on the unbounded medium–structure interface, u is the displacement in

the nodes on the interface, S1ðxÞ is the frequency-dependent dynamic stiffness matrix of the unbounded

medium.

There are many approaches for the determination of the infinite domain impedance, several methods
have been tried, including infinitesimal cell method, boundary element, dynamic infinite element and

transmitting boundary method, and finally the damping-solvent extraction method is employed, although

the computational cost of it is not less than that of other methods, the concept is concise and the imple-

mentation is very easy.

2.1. Concept of damping-solvent extraction method

The damping-solvent extraction method consists of three steps (Wolf and Song, 1996). In the first step,

the unbounded medium is truncated by an artificial boundary and an artificial damping which is not present

in the actual medium is introduced as solvent. The effect of this damping includes reducing the amplitudes

of the outgoing waves propagating from the structure–medium interface towards the outer boundary and

after reflection diminishing the amplitudes of the reflected waves to negligible amplitudes when reaching the

structure–medium interface. Thus the structure–medium interface�s motion depends only on the outgoing
waves. All the degrees of freedom of this bounded medium with the exception of those on the structure–

medium interface can be eliminated, leading to the dynamic-stiffness matrix of the damped bounded

medium. In the second step, the dynamic stiffness matrices obtained in the first step is assumed to be equal

to the corresponding values of the damped unbounded medium as no reflected waves existed at the

structure–medium interface. In the third step, the influence of the introduced artificial damping on the

dynamic stiffness matrix is extracted to obtain the dynamic stiffness matrix of the un-damped unbounded

medium. The computational efforts of extraction can be neglected compared with that of the first step.

2.2. Fundamental formulae

In the frequency domain for an un-damped bounded medium, the dynamic-stiffness matrix StðxÞ cor-
responding to all degrees of freedom is written as (superscript t for total bounded medium)
StðxÞ ¼ K � x2M ð2Þ

in which K and M denote the static-stiffness matrix and mass matrix of the bounded medium with finite

element respectively.

After introduce dimensionless matrix K and M , then we have
K ¼ Grs�2
0 K ; M ¼ qrs0M ð3Þ
with the shear module G, mass density q, characteristic length r0 and spatial dimension s (¼ 3 or 2 for 3-D

or 2-D problems respectively). K does not depend on G and nor M on q.
Then Eq. (2) is reformulated as
StðxÞ ¼ Grs�2
0 ðK � a20MÞ ð4Þ
where a0 ¼ xr0=cs is the dimensionless frequency. cs ¼
ffiffiffiffiffiffiffiffiffi
G=q

p
is the shear-wave velocity.

After introducing artificial damping f, the dynamic stiffness matrix corresponding to all degrees of

freedom for damped bounded medium is transformed to (subscript f for damping)
St
fðxÞ ¼ ð1þ 2ifÞK � x2M ¼ G�rs�2

0 ðK � a�
2

0 MÞ ð5Þ
in which G� and a�0 are the counterparts of shear module G and dimensionless frequency a0 with artificial

damping f respectively.
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G� ¼ Gð1þ 2ifÞ; c�s ¼
ffiffiffiffiffiffiffiffiffiffiffi
G�=q

p
; a�0 ¼

xr0
c�s

ð6Þ
Partitioning all degrees of freedom into two parts, degrees of freedom on the structure–medium interface

(indicated by subscript o) and degrees of freedom not on the structure–medium interface (indicated by

subscript i), Eq. (5) can be expressed in the form
St
f ¼

Sii Soi

Sio Soo

� �
¼ ð1þ 2ifÞ K ii K io

Koi Koo

� �
� x2 M ii M io

Moi Moo

� �
ð7Þ
After elimination of all degrees of freedom not located on the structure–bounded medium interface, the

dynamic stiffness matrix Sb
f ðxÞ on the structure–bounded damped medium interface can be expressed as

follows (superscript b for bounded medium–structure interface)
Sb
f ðxÞ ¼ Soo � SoiS

�1
ii S io ð8Þ
From Eqs. (5), (7) and (8), it can be seen that the dynamic stiffness matrix Sb
f ðxÞ on the structure–

medium interface will still be proportional to G�rs�2
0 and can be expressed by the corresponding dimen-

sionless dynamic stiffness matrix S
bða�0Þ
Sb
f ðxÞ ¼ G�rs�2

0 S
bða�0Þ ð9Þ
Analogously there exist the relationship SbðxÞ ¼ Grs�2
0 S

bða0Þ for the un-damped bounded medium.

Together with Eqs. (4) and (5), it can be noted that S
bða�0Þ can be thought to be the dimensionless dynamic

stiffness matrix corresponding to un-damped bounded medium at frequency a�0.
It is assumed that the impedance Sb

f ðxÞ of the damped bounded medium is approximately equal to that

of the damped unbounded medium S1
f ðxÞ. The same also applies to their first derivative with respect to x.

Hence
S1
f ðxÞ ¼ Sb

f ðxÞ; S1
f ðxÞ;x ¼ Sb

f ðxÞ;x ð10Þ
Dividing Eq. (10) by G�rs�2
0 with
S1
f ðxÞ ¼ G�rs�2

0 S
1ða�0Þ ð11Þ
and with Eq. (9) yields
S
1ða�0Þ ¼ S

bða�0Þ; S
1ða�0Þ;x ¼ S

bða�0Þ;x ð12Þ

As discussed by Wolf and Song (1996), the dimensionless impedance S

1ða0Þ of unbounded un-damped

medium is evaluated with a0 corresponding to the same x as a�0. To calculate S
1ða0Þ, the first two terms of a

Taylor expansion of S
1ða�0Þ are formulated
S
1ða0Þ ¼ S

1ða�0 þ ða0 � a�0ÞÞ ¼ S
1ða�0Þ þ S

1ða�0Þ;a�
0
ða0 � a�0Þ ð13Þ
Using Eqs. (9) and (12) with
S1ðxÞ ¼ Grs�2
0 S

1ða0Þ ð14Þ

and multiplying the right hand of Eq. (13) by G�rs�2

0 to converse the dimensionless impedance matrix to

actual impedance matrix yields
S1ðxÞ ¼ G
G� Sb

f ðxÞ
�

þ Sb
f ðxÞ;x

a0 � a�0
a�0;x

�
ð15Þ
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Substituting ða0 � a�0Þ=a�0;x ¼ x
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2if
p

� 1
�
into above equation leads to
S1ðxÞ ¼ 1

1þ 2if

�
Sb

f ðxÞ þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2if
p

� 1
�
xSb

f ðxÞ;x
�

ð16Þ
Wolf and Song (1996) propose such algorithm for matrix S1ðxÞ as
S1ðxjÞ ¼
1

1þ 2if

�
Sb

f ðxjÞ þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2if
p

� 1
�
xjS

b
f ðxjÞ;xjx¼xj

�
ð17Þ

Sb
f ðxjÞ;xjx¼xj ¼

Sb
f ðxjþ1Þ � Sb

f ðxj�1Þ
xjþ1 � xj�1

ð18Þ
which needs three times computational cost of Eq. (8) in first step for a given frequency xj.
3. Recursive procedure for impedance of unbounded medium

The efficiency of the solving Eqs. (8) and (18) is of great significance because they have to be repeated for

a series of frequencies. Thus the algorithm, which consists of three steps, is focused on the efficiency of the

solving of S�1
ii S io in Eq. (8) and Sb

f ðxÞ;x in Eq. (18).

3.1. Accurate formulae for Sb
f(x),x

The use of Eq. (18) is not an efficient procedure for Sb
f ðxÞ;x. In this step, an accurate formula for Sb

f ðxÞ;x
is derived to reduce the computational cost of Eq. (18).

First, for specified frequency xj, some notations are set for conciseness as follows (see Eq. (8))
Dx ¼ xjþ1 � xj ð19aÞ

Sj ¼ SiiðxjÞ; Sjþ1 ¼ Siiðxjþ1Þ ð19bÞ

Y j ¼ S�1
ii ðxjÞSio ¼ S�1

j S io;Y jþ1 ¼ S�1
ii ðxjþ1ÞSio ¼ S�1

jþ1Sio ð19cÞ
For the sake of simplicity a lumped-mass matrix of the finite element is chosen, then the off-diagonal

terms of the matrix Sio equal ST
oi and do not vary with frequency as shown in Eq. (7).

By virtues of Eqs. (7) and (19b), we obtain
Sj ¼ ð1þ 2ifÞK ii � x2
jM ii ð20Þ

Sjþ1 ¼ ð1þ 2ifÞK ii � ðxj þ DxÞ2M ii ¼ Sj � hjM ii ð21Þ
in which
hj ¼ hðxj;DxÞ ¼ 2xjDxþ Dx2 for xjþ1 ¼ xj þ Dx ð22Þ
Defining
Sjþ1 ¼ Sj þ DSjþ1; Y jþ1 ¼ Y j þ DY jþ1 ð23Þ
and using Eq. (21), we can obtain
DSjþ1 ¼ �hj �M ii ð24Þ



3086 J. Chen et al. / International Journal of Solids and Structures 41 (2004) 3081–3094
Using the following relationships based on Eqs. (19c) and (23)
S io ¼ SjY j ¼ Sjþ1Y jþ1 ¼ ðSj þ DSjþ1ÞðY j þ DY jþ1Þ ð25Þ
we can get
DY jþ1 ¼ �S�1
j DSjþ1ðY j þ DY jþ1Þ ð26Þ
An iterative procedure for DY jþ1 can be formulated from Eq. (26) as
DYkþ1
jþ1 ¼ �S�1

j DSjþ1ðY j þ DYk
jþ1Þ ð27Þ
Using Eq. (24), above equation can be further expressed as
DYkþ1
jþ1 ¼ hjS

�1
j M iiðY j þ DYk

jþ1Þ ¼ hjX jðY j þ DYk
jþ1Þ ð28Þ
where
X j ¼ S�1
j M ii ð29Þ
Since Sj and M ii are symmetric, X j ¼ XT
j applies.

Eq. (28) can be further expressed in series form as
DY jþ1 ¼ hjX jðI þ ðhjX jÞ þ ðhjX jÞ2 þ � � �ÞY j ð30Þ
in which I is unit matrix.

The derivative of Sb
f ðxÞ with respect to x is written as
Sb
f ðxjÞ;x ¼ lim

Dx!0

Sb
f ðxj þ DxÞ � Sb

f ðxjÞ
Dx

ð31Þ
By virtues of Eqs. (8), (19c) and (23), Eq. (31) is expressed as
Sb
f ðxjÞ;x ¼ lim

Dx!0

Sooðxj þ DxÞ � SooðxjÞ
Dx

� lim
Dx!0

SoiðY jþ1 � Y jÞ
Dx

¼ Soo;x � lim
Dx!0

SoiDY jþ1

Dx
ð32Þ
Substituting Eqs. (7) and (30) into Eq. (32), the derivative of Sb
f ðxjÞ with respect to frequency can be

given as
Sb
f ðxjÞ;x ¼ �2xjMoo � lim

Dx!0
SoiX j

hjðI þ ðhjX jÞ þ � � �Þ
Dx

Y j ¼ �2xjMoo � 2xjSoiX jY j
Together with Eqs. (29) and (19c), the accurate formula for derivative of Sb
f ðxjÞ is as follows
Sb
f ðxjÞ;x ¼ �2xjðMoo þ YT

j M iiY jÞ ð33Þ
which leads to the dynamic stiffness matrix of unbounded medium as
S1ðxjÞ ¼
1

1þ 2if

�
Soo � SioY j � 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2if

p
� 1

�
x2

j ðMoo þ YT
j M iiY jÞ

�
ð34Þ
Intermediate matrix Y j ¼ S�1
j ðxjÞSio is utilized to obtain Sb

f ðxjÞ and its derivative, which leads to a

drastic reduction of the computational cost to only 1/3 of that by Eq. (18) for a specified frequency of

interested.

3.2. Iterative procedure for the dynamic stiffness matrices for a series of frequencies

It can be seen from Eqs. (8) and (19c) that solving Y j ¼ S�1
j ðxjÞSio contributes most of the computa-

tional cost to the determination of the impedance on structure–medium interface. If for xjþ1, Y jþ1 can be
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obtained from Eqs. (23) and (28) instead of from Eqs. (8) or (18), the computational cost can be further

reduced.

The orders of magnitude o of the property matrices are K ¼ oðGrs�2
0 Þ and M ¼ oðqrs0Þ.

Defining
X j ¼ �S�1
j M ii; X jþ1 ¼ �S�1

jþ1M ii ð35Þ
then it follows from Eq. (18) and above expression that Y j ¼ oð1Þ, X j ¼ oðqr2=GÞ.
Defining the power series in Eq. (18) as transfer matrix
Aj ¼ I þ ðhjX jÞ þ ðhjX jÞ2 þ � � � ð36Þ
which has the property of Aj ¼ I þ ðhjXÞ � Aj then Eq. (28) can be further expressed
DY jþ1 ¼ hjX jAjY j ð37Þ
Using Eq. (23), Y jþ1 at xjþ1 can be obtained from Y j at xj by multiplying transfer matrix Aj
Y jþ1 ¼ ðI þ ðhjX jÞAjÞY j ¼ AjY j ð38Þ

The large underground hydroelectric power plants like Xi Luodu project are usually located at rock region

with shear modulus G of magnitude oð1010Þ (Pa), mass density q of magnitude of oð103Þ (kg/m3) and
characteristic length r of oð101Þ (m), so X j has the order of magnitude oð10�5Þ (see Eqs. (7) and (35); In

engineering seismic analysis, the frequencies of interested are usually in the range of (0, 102), then we have

hj ¼ oð10Þ if Dx is set comparatively small as oð10�1Þ.
So, only the first three terms in the bracket of Eq. (36) can give satisfactory results with relative error

tolerance of magnitude oð10�10Þ for Y jþ1, That is
Aj ¼ I þ ðhjX jÞ þ ðhjX jÞ2 ð39Þ

Thus Y jþ1 can be obtained from the matrix Y j and X j at frequency xj based on Eq. (38) instead of

Eq. (19c) which would takes great computational effort. Then from Eq. (34), the impedance matrix S1ðxjÞ
at frequency xjþ1 can be obtained from Y jþ1.

But the computational costs are still great if X jþ1 is gotten from Eq. (35) for frequency xjþ1, so the

analogous recursive procedure for the computation of X jþ1 is derived.

Assume
X jþ1 ¼ X j þ DX jþ1 ð40Þ

Then from Eqs. (23) and (35), we have
M ii ¼ SjX j ¼ Sjþ1X jþ1 ¼ ðSj þ DSjþ1Þ � ðX j þ DX jÞ ð41Þ

which leads to
DX jþ1 ¼ hjX jðX j þ DX jþ1Þ ð42Þ

Analogous to the derivation for Y jþ1, the recursive procedure about X jþ1 can be written in the following

forms as
DXkþ1
jþ1 ¼ hjX jðX j þ DXk

jþ1Þ ð43Þ

DX jþ1 ¼ hjX jðI þ ðhjX jÞ þ ðhjX jÞ2 þ � � �ÞX j ¼ hjX jAjX j ð44Þ

and
X jþ1 ¼ AjX j ð45Þ
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Eq. (45) takes the same form to Eq. (38).

Obtaining X jþ1 from Eq. (45) can avoid the solving of Eq. (35) and would greatly reduce the compu-

tational cost for a series of frequencies.

3.3. Summary of procedure

The procedure for the impedance matrix S1ðxjÞ of unbounded medium developed in the preceding

sections may be summarized as follows.
Initialization (for a given starting frequency)
S iiðx0Þ ¼ ð1þ 2ifÞK ii � x2
0M ii; Sooðx0Þ ¼ ð1þ 2ifÞKoo � x2

0Moo

S io ¼ ST
oi ¼ ð1þ 2ifÞK io

X0 ¼ �S�1
ii ðx0ÞM ii; Y0 ¼ S�1

ii ðx0ÞS io

S1ðx0Þ ¼
1

1þ 2if

�
Sooðx0Þ � SioY0 � 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2if

p
� 1

�
x2

0ðMoo þ YT
0M iiY0Þ

�

Recursive procedure

For j ¼ 0; n
xjþ1 ¼ xj þ Dx

hj ¼ hðxj;DxÞ ¼ 2xjDxþ Dx2

Sooðxjþ1Þ ¼ ð1þ 2ifÞKoo � x2
jþ1Moo

Aj ¼ I þ ðhjX jÞ þ ðhjX jÞ2 þ � � � or Aj ¼ I þ ðhjX jÞ þ ðhjX jÞ2

X jþ1 ¼ AjX j; Y jþ1 ¼ AjY j

S1ðxjþ1Þ ¼
1

1þ 2if

�
Sooðxjþ1Þ � SioY jþ1 � 2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2if

p
� 1

�
x2

jþ1ðMoo þ YT
jþ1M iiY jþ1Þ

�

4. Seismic response analysis of Xiluodu hydropower plant

Several examples, which had been discussed by Wolf and Song (1996), are examined here to illustrate the

accuracy and effectiveness of the proposed method, then the procedure is applied to the impedance com-

putation of the unbounded rock medium in which located Xiluodu underground power plant. Incorporated

with the substructure method, the dynamic response of underground caverns-unbounded rock medium

interaction system to earthquake excitation is analyzed.

4.1. Semi-infinite rod on elastic foundation

A semi-infinite rod on elastic foundation, illustrated in Fig. 1, is used to demonstrate accuracy of the
proposed method for simulating one-dimensional wave propagation problem. As will become apparent,

this is a dispersive system, i.e. the phase velocity is a function of frequency. In addition, a so-called cut-off
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Fig. 2. Dynamic-stiffness coefficient of semi-infinite rod on elastic foundation.
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frequency occurs below which no waves propagate. With an analytical solution available given by Wolf and
Song (1996), it is thus a stringent test.

In the finite region adjacent to the structure–unbounded medium interface, artificial damping f ¼ 0:1 is

introduced. The area of the rod is denoted by A, the modulus of elasticity by E, the mass density by q, and
the static spring stiffness per unit length of the elastic foundation by kg, at the outer boundary a viscous

dashpot is introduced to further reduce the length l of bounded medium.

The normalized results (solid line) are plotted in Fig. 2, in which r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
EA=kg

p
, cl ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
, a0 ¼ xr0=cl

and l=r0 ¼ 4. As can be seen from the comparison with the analytical solution (dashed line), the agreement

is excellent.
4.2. Out-of-plane motion of semi-infinite layer

As a two-dimensional wave propagation problem with an analytical solution available, the out-of-plane

motion of a semi-infinite layer of constant depth d shown in Fig. 3 is addressed. Out of the boundaries
R 

U

d
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x
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d 

l 

Fig. 3. Out-of-plane motion of semi-infinite layer with prescribed displacement.
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extending to infinity in the radial direction is fixed and the other is a free surface. The structure–medium

interface coincides with the y-axis.
The material behavior of the homogeneous layer is characterized by the shear module G and mass

density q. The dynamic-stiffness matrix at the structure–medium interface corresponding to a parabolic

variation of the displacement u0ðyÞ is calculated. As will become apparent, this system has a cut-off fre-

quency at the layer�s fundamental natural frequency. At this frequency and at each of the higher natural
frequencies, a Love mode starts with a phase velocity of infinity, which decreases for higher frequencies,

converging to the shear-wave velocity for infinite frequency, this case, which often occurs in practice, is thus

a very stringent test.

The dimensionless spring and damping coefficients (solid line) are plotted versus a0 in Fig. 4, in which,

cs ¼
ffiffiffiffiffiffiffiffiffi
G=q

p
, a0 ¼ xd=cs. The analytical results (Wolf and Song, 1996) are also plotted in dashed line for

comparison and it proves the good accuracy of the method.
4.3. Out-of-plane motion of semi-infinite wedge

As another two-dimensional wave propagation problem shown in Fig. 5, a semi-infinite wedge with an

opening angle a and with a free and a fixed boundary extending to infinity in the radial direction is

investigated to further verify the proposed method. The example describes an out-of-plane motion gov-
erned by the scalar wave equation.
Structure -

medium interface

 α θ 

r

r0 

Fig. 5. Out-of-plane motion of semi-infinite wedge with prescribed displacement.
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Fig. 6. Dynamic-stiffness coefficient of semi-infinite wedge.
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The typical constants of the semi-infinite wedge are the shear modulus G and the mass density q, the
structure–medium interface coincides with the arc determined by the radius r0, where the motion as a linear

function of the angle is prescribed. The same problem is also computed by scaled boundary finite-element

method for comparison shown in Fig. 6, which can be seen as exact solution.

This example shows that the proposed method can give very satisfactory result.
4.4. Seismic response of Xiluodu large underground power plant

The accuracy of the proposed method has been verified by the above numerical results and the com-

putational time is reduced greatly compared with the original procedure (Wolf and Song, 1996). And now
the recursive procedure is applied to the seismic analysis of Xiluodu underground power plant caverns.

Xiluodu arch dam is one of the several huge hydropower projects being building or will be built in

seismic active south-west China. The underground power plant cavern is about 448 m long, 74.4 m high and

30 m wide.
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Fig. 7. Real part variation with frequency of wall rock dynamic impedance.
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The variation of the dynamic stiffness of unbounded rock medium in Xiluodu zone with frequency is

demonstrated in Figs. 7 and 8, in which the lines marked with A denote diagonal terms of the impedance

matrix, others denote off-diagonal terms.

From Figs. 7 and 8, it can be shown that the real and imaginary part of the impedance vary with fre-

quency slowly in the engineering interested frequency range.
Fig. 9. Maximum main stress distribution of underground group caverns (unit: MPa).

Fig. 10. Minimal main stress distribution of underground group caverns (unit: MPa).



Fig. 11. Maximum displacement distribution of underground group caverns (unit: cm).
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The underground hydropower plant includes several caverns, which are used for electricity generation,

electric transforming equipment, and two wells for adjusting hydraulic pressure.

Rock material is linear orthotropic with lateral modulus 2.0 · 1010 Pa, vertical modulus 1.5 · 1010 Pa,

Poisson�s ratio 0.2, mass density 2850 kg/m3. The concrete linings of the cavern are linear isotropic material

with elastic modulus 3.0 · 1010 Pa, Poisson�s ratio 0.17, mass density 2400 kg/m3. A seismic wave recorded

on rock at San Fernando in 1971 is selected.

The maximum and minimal response results of one representative cross section through the time history
are shown in Figs. 9–11.

From Figs. 9 and 10, it is demonstrated that the response of middle cavern is very small compared with

that of side caverns because of the shielding effect of side cavern to seismic wave.
5. Conclusion

A high performance recursive damping-solvent method is presented. The method in conjunction with

substructure method for the seismic analysis of large underground caverns can results in a great reduction
of computational costs with high accuracy and efficiency. It can be used as the appropriate tool for the

dynamic analysis of various underground structures.
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