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Abstract

In the present paper, the seismic response of a large underground hydropower plant, which is located in southeast
China, is investigated and a high performance recursive procedure based on the damping-solvent extraction method
(DSE) is proposed for the study of the dynamic stiffness matrix of unbounded rock medium. An analytical formula for
the derivative of the dynamic stiffness matrix of unbounded medium with respect to frequency is given, which can
reduce the computational cost for a specified frequency. Then a recursive procedure is derived to converse the solving of
the inverse matrix at a series of frequencies to step-by-step matrices multiplication, which can reduce the computational
cost dramatically. The proposed procedure incorporated with substructure method is implemented in a finite element
code for the dynamic analysis of a large three-dimensional underground hydropower plant caverns subjected to seismic
excitation. Numerical tests on several representative unbounded domain wave problems demonstrate excellent accuracy
and efficiency.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The seismic response analysis of underground structures is very complicated and difficult because of the
unbounded medium-structure dynamic interaction and the uncertainty of earthquake excitation, especially
for large scale underground caverns of hydroelectric power stations. The constraints and radiation damping
of the unbounded medium have great effects on the seismic response of underground structures.

Required in the substructure method for the earthquake analysis of large three-dimensional under-
ground caverns is the impedance matrix (or the frequency-dependant dynamic stiffness matrix) for the
unbounded rock medium region, which is defined at the nodal points on the rock-structure interface. But
the influence of the unbounded rock medium on underground structures is a difficult problem for the
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dynamic rock-structure interaction analysis. Up to now, the computation of the impedance of unbounded
medium has been the subject of many investigations over past years and a variety of analysis techniques are
proposed, such as the frequency domain BEM used by Stamos and Beskos (1995), dynamic infinite element
by Zhao and Valliappan (1993), periodic infinite solid element by Chow and Smith (1981), cloning method
by Dasgupta (1982), transmitting boundary by Werkle (1987) and many other methods. The study by Wolf
and his cooperators, including recursive method in time domain (Wolf and Motosaka, 1989), finite element
multi-cell cloning method (Wolf and Song, 1994b), consistent infinitesimal finite-element cell method (Wolf
and Song, 1994a), forecasting method (Wolf and Song, 1995), damping-solvent extraction method (Wolf
and Song, 1996) etc., have helped to the development of comprehension of physical essence and compu-
tation methods on dynamic soil-structure interaction analysis. More general address on the dynamic
analysis of underground structures can be found in the paper by Stamos and Beskos (1995). But few
methods is widely accepted in engineering practice because of the complication and high computational
cost induced by the determination of the dynamic stiffness matrix of the unbounded medium. Dependence
on frequency leads to the determination of the dynamic stiffness matrix of the unbounded medium at a
serial of discretized frequencies in frequency domain or the convolution integrals in time domain.

Among all these methods, the so-called damping-solvent extraction method (DSE), refined as discussed
in this paper, can be easily accepted and implemented because of conceptual conciseness and programming
simplicity. In addition, it is suitable to be applied to any complex geological or geographic conditions, such
as the canyon rock condition in which located many high dams in south-west China, while some other
methods have strict restrictions on element geometry or material composition that would cause some
difficulties in application.

The purpose of this paper is to present a general, efficient numerical method to determine the dynamic
response of the unbounded medium-structure system based on refined DSE Method.

Firstly, an analytical formula for the computation of the derivative of the dynamic stiffness matrix of
unbounded medium with respect to frequency is suggested, which cost only one third computational efforts
for a specified frequency of that by the difference method (Wolf and Song, 1996).

Then an iterative approach (or transfer matrix approach) is proposed for the inverse matrix evaluation.
This is the key point for the whole refined procedure, which makes use of the property that the product of
the reverse matrix of stiffness with the mass matrix is a very small quantity. By comparison with the direct
method, the decomposition of the complex matrix is avoided which contributes a great to the computa-
tional cost.

And at last, a recursive procedure is put up for the determination of dynamic stiffness matrix of un-
bounded wall rock at a series of frequencies, which can start from any specific frequency of interested.

The numerical test and the application of the proposed procedure to large underground power plants is
presented. The results show that the proposed procedure has better accuracy and lower cost in computing
the dynamic stiffness of the wall rocks compared to existing methods, and in the current engineering design
practice of underground structures in seismic active area, the present method can greatly simplify com-
putation and improve the efficiency.

2. Impedance of unbounded medium

In the substructure method for the unbounded medium-structure dynamic interaction analysis, the effect
of the unbounded medium on the underground structures can be expressed as the interaction force acted on
the unbounded medium-structure interface. In the frequency domain it can be expressed as (Wolf and
Song, 1996)

R(0) = §%(0) - u(w) (1)
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In which R is the interaction force on the unbounded medium-structure interface, u is the displacement in
the nodes on the interface, $(w) is the frequency-dependent dynamic stiffness matrix of the unbounded
medium.

There are many approaches for the determination of the infinite domain impedance, several methods
have been tried, including infinitesimal cell method, boundary element, dynamic infinite element and
transmitting boundary method, and finally the damping-solvent extraction method is employed, although
the computational cost of it is not less than that of other methods, the concept is concise and the imple-
mentation is very easy.

2.1. Concept of damping-solvent extraction method

The damping-solvent extraction method consists of three steps (Wolf and Song, 1996). In the first step,
the unbounded medium is truncated by an artificial boundary and an artificial damping which is not present
in the actual medium is introduced as solvent. The effect of this damping includes reducing the amplitudes
of the outgoing waves propagating from the structure-medium interface towards the outer boundary and
after reflection diminishing the amplitudes of the reflected waves to negligible amplitudes when reaching the
structure—medium interface. Thus the structure-medium interface’s motion depends only on the outgoing
waves. All the degrees of freedom of this bounded medium with the exception of those on the structure—
medium interface can be eliminated, leading to the dynamic-stiffness matrix of the damped bounded
medium. In the second step, the dynamic stiffness matrices obtained in the first step is assumed to be equal
to the corresponding values of the damped unbounded medium as no reflected waves existed at the
structure—medium interface. In the third step, the influence of the introduced artificial damping on the
dynamic stiffness matrix is extracted to obtain the dynamic stiffness matrix of the un-damped unbounded
medium. The computational efforts of extraction can be neglected compared with that of the first step.

2.2. Fundamental formulae

In the frequency domain for an un-damped bounded medium, the dynamic-stiffness matrix S*(w) cor-
responding to all degrees of freedom is written as (superscript t for total bounded medium)

S'(w) =K — o*M (2)

in which K and M denote the static-stiffness matrix and mass matrix of the bounded medium with finite
element respectively. o o
After introduce dimensionless matrix K and M, then we have

K=GrK, M=p,M (3)

with the shear module G, mass density p, characteristic length r and spatial dimension s (=3 or 2 for 3-D
or 2-D problems respectively). K does not depend on G and nor M on p.
Then Eq. (2) is reformulated as

S'(w) = Gry *(K — ;M) )

where ay = wry/c, is the dimensionless frequency. ¢, = \/G/p is the shear-wave velocity.
After introducing artificial damping {, the dynamic stiffness matrix corresponding to all degrees of
freedom for damped bounded medium is transformed to (subscript { for damping)

SHw) = (1 +2i)K — oM = G} *(K — a; M) (5)

in which G* and q; are the counterparts of shear module G and dimensionless frequency a, with artificial
damping { respectively.
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wry

G =G(1+20), c=+G/p, a)=

(6)

*
CS

Partitioning all degrees of freedom into two parts, degrees of freedom on the structure-medium interface
(indicated by subscript o) and degrees of freedom not on the structure-medium interface (indicated by
subscript i), Eq. (5) can be expressed in the form

¢ | Si Soi | _ o Ki Kio | S| My M,
S;{Sio Soo](l+21€)|:K0i K00:| w M, M. (7)

After elimination of all degrees of freedom not located on the structure-bounded medium interface, the
dynamic stiffness matrix S?(w) on the structure-bounded damped medium interface can be expressed as
follows (superscript b for bounded medium-structure interface)

82 (w) = Soo — SaiS; ' S (8)

From Egs. (5), (7) and (8), it can be seen that the dynamic stiffness matrix Sg(a)) on the structure—
medium interface will still be proportional to G*ry? and can be expressed by the corresponding dimen-
sionless dynamic stiffness matrix .S (a;)

SP(w) = G'ry 78 (o) (9)

Analogously there exist the relationship S°(w) = Grg‘sz(oco) for the un-damped bounded medium.
Together with Egs. (4) and (5), it can be noted that S (a;) can be thought to be the dimensionless dynamic
stiffness matrix corresponding to un-damped bounded medium at frequency a;.

It is assumed that the impedance Sf’(w) of the damped bounded medium is approximately equal to that
of the damped unbounded medium S7°(w). The same also applies to their first derivative with respect to o.
Hence

8¥(0) = S (@), SF(®),0=S2(®)0 (10)
Dividing Eq. (10) by G*r~2 with
8 (w) = G'ry S (ap) (11)
and with Eq. (9) yields
S (@) =S (@), 8 (a5)0="5"(a}). (12)

As discussed by Wolf and Song (1996), the dimensionless impedance S (ap) of unbounded un-damped

medium is evaluated \lith a, corresponding to the same w as a;. To calculate Eoo(ao), the first two terms of a
Taylor expansion of S (a;) are formulated

8™ (a0) =87 (ag + (a0 — a3)) = 8™ (ag) + 8™ (45) . (a0 — ap) (13)
Using Egs. (9) and (12) with
S§*(w) = Gry2S™ (ag) (14)

and multiplying the right hand of Eq. (13) by G*r{2 to converse the dimensionless impedance matrix to
actual impedance matrix yields

- G ay — aj
5% (w) = e (sg(w) +852(0)0 —Oa °> (15)
(1R10]



J. Chen et al. | International Journal of Solids and Structures 41 (2004) 3081-3094 3085

Substituting (ag — a3)/ah,e = a)(\/l + 21 — 1) into above equation leads to

00 _ 1 b s b
§©) = 73 ($2@) + (VIF2L = 1)wSk(o)., ) (16)
Wolf and Song (1996) propose such algorithm for matrix $*(w) as
00 _ 1 b . b
8% () = 73z (S ) + (VIH 2L 1)0,820,) o, ) (17)

S2(w51) — S (w;-1)

Wjy] — W

S?(wj)m)\w:w,- =

which needs three times computational cost of Eq. (8) in first step for a given frequency w;.

3. Recursive procedure for impedance of unbounded medium

The efficiency of the solving Eqgs. (8) and (18) is of great significance because they have to be repeated for
a series of frequencies. Thus the algorithm, which consists of three steps, is focused on the efficiency of the
solving of S;'S;, in Eq. (8) and S%(w),,, in Eq. (18).

3.1. Accurate formulae for Sif (w),0
The use of Eq. (18) is not an efficient procedure for S?(a)),w. In this step, an accurate formula for S?(a)),m

is derived to reduce the computational cost of Eq. (18).
First, for specified frequency w;, some notations are set for conciseness as follows (see Eq. (8))

Ao = 0 — ) (19a)
S; = Si(0;), Si1 = Si(w1) (19b)
Y, =8;"(0)S0 = S;ISim Yo =87 (041)8i0 = Sjlllsio (19¢)

For the sake of simplicity a lumped-mass matrix of the finite element is chosen, then the off-diagonal
terms of the matrix Sj, equal SOTi and do not vary with frequency as shown in Eq. (7).
By virtues of Egs. (7) and (19b), we obtain

S; = (14+2)K; — waii (20)

S = (14 20K — (0 + Aw)’ My = S; — h;Mj (21)
in which

hj = h(w;, Aw) = 20;A0 + Ao*  for w1 = 0; + Aw (22)
Defining

Sin =8 +AS;, Yy =Y, +AY;y, (23)

and using Eq. (21), we can obtain

ASH'I = _h/ . Mii (24)
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Using the following relationships based on Egs. (19c) and (23)

Sio =8;Y; =81 Y1 = (S, + AS;)(Y; + AY ) (25)
we can get

AYj.y = —8;'AS; (Y, + AY ) (26)
An iterative procedure for AY;,; can be formulated from Eq. (26) as

AYH = 8 IAS, (Y, + AV, ) (27)

Using Eq. (24), above equation can be further expressed as

AV = 1y MY, AV, ) = B X,(Y, + AV ) (28)
where

Since S; and Mj; are symmetric, X; = XJT applies.
Eq. (28) can be further expressed in series form as

AY o = hX;(I+ (X)) + (X)) + )Y, (30)
in which 7 is unit matrix.
The derivative of S?(w) with respect to w is written as
SP(w; + Aw) — S°(w))
b ) — 1 4 J 14 J
Se(@))s0 Algilo Aw (31)
By virtues of Egs. (8), (19¢c) and (23), Eq. (31) is expressed as

Sl +Aw) — S (w; . S Y=Y . SGAY,
S?(wj)au) = lim (wj * w) (wj) — lim ( L j) = SOO;w — lim AL
Aw—0 Aw Aw—0 Aw Aw—0 Aw

(32)

Substituting Egs. (7) and (30) into Eq. (32), the derivative of Slg(coj) with respect to frequency can be
given as

lim Soin h](I + (th]) t-- )

b
S(w),,=—200;M,, —
5( ])w} 4 00 Aw—0 A(,U

Together with Eqgs. (29) and (19c¢), the accurate formula for derivative of SE’(a),-) is as follows

S2(0)),0 = —20,(Moo + Y] M;;Y ) (33)
which leads to the dynamic stiffness matrix of unbounded medium as
00 _ 1 i : 2 T .
() = T3 (Soo = Si0¥; = 2(VT+ 2L = 1) 0} (Moo + Y M Y,)) (34)

Intermediate matrix ¥; = Sj_l(a)_,-)Si0 is utilized to obtain S?(w;) and its derivative, which leads to a
drastic reduction of the computational cost to only 1/3 of that by Eq. (18) for a specified frequency of
interested.

3.2. Iterative procedure for the dynamic stiffness matrices for a series of frequencies

It can be seen from Egs. (8) and (19¢) that solving Y, = Sj’1 (w;)S;, contributes most of the computa-
tional cost to the determination of the impedance on structure-medium interface. If for w;;;, ¥ ;4 can be
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obtained from Egs. (23) and (28) instead of from Egs. (8) or (18), the computational cost can be further
reduced.
The orders of magnitude o of the property matrices are K = o(Gr{2) and M = o(pr}).
Defining
=-8'M;, X;=-S\M; (35)

Jj+1

then it follows from Eq. (18) and above expression that ¥; = o(1), X; = o(pr*/G).
Defining the power series in Eq. (18) as transfer matrix

Ay =T+ (X)) + (X)) + -+ (36)
which has the property of A4; =1 + (h;X) - A; then Eq. (28) can be further expressed
AY ;. =hXAY; (37)

Using Eq. (23), Y. at w;;; can be obtained from Y; at w; by multiplying transfer matrix A;
Yoo = (I + (hX))4))Y; = 4;Y; (38)

The large underground hydroelectric power plants like Xi Luodu project are usually located at rock region
with shear modulus G of magnitude o(10'°) (Pa), mass density p of magnitude of 0(10%) (kg/m?) and
characteristic length » of 0(10") (m), so X; has the order of magnitude o(10~°) (see Egs. (7) and (35); In
engineering seismic analysis, the frequencies of interested are usually in the range of (0, 10?), then we have
h; = 0(10) if Aw is set comparatively small as o(107").

So, only the first three terms in the bracket of Eq. (36) can give satisfactory results with relative error
tolerance of magnitude o(107'%) for Y, That is

Ay =1+ (hX) + (hX,) (39)

Thus Y;,; can be obtained from the matrix Y; and X, at frequency w; based on Eq. (38) instead of
Eq. (19c) which would takes great computatlonal eﬂort Then from Eq. (34) the impedance matrix $*(w;)
at frequency w;;; can be obtained from Y,

But the computational costs are still great if X;.; is gotten from Eq. (35) for frequency w;;;, so the
analogous recursive procedure for the computation of X, is derived.

Assume
X=X, +AX;,, (40)
Then from Egs. (23) and (35), we have
Mii = §;X; = §;1 X1 = (8 + ASj11) - (X; + AX)) (41)
which leads to
AXjo =0 X;(X;+ AX ) (42)

Analogous to the derivation for Y,;, the recursive procedure about X;., can be written in the following
forms as

AXEH = X (X, + AXE ) (43)
AXjor = hX;(I+ (hX) + (X, + )X, = h,X;4,X, (44)

and
Xjn = A X (45)
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Eq. (45) takes the same form to Eq. (38).
Obtaining X;;; from Eq. (45) can avoid the solving of Eq. (35) and would greatly reduce the compu-
tational cost for a series of frequencies.

3.3. Summary of procedure
The procedure for the impedance matrix S (w;) of unbounded medium developed in the preceding

sections may be summarized as follows.
Initialization (for a given starting frequency)

Si(wo) = (1 + 210K — oMy, Soo(wo) = (1 4 21) Koo — M,
S, = ST = (1 +2i0)K;,

Xo=—S8; (wo)Mi, Yo=S;"(00)Sio

il

00 _ 1 . 2 T
$¥(00) = 15 (Soo(wo) — S, Yy — 2(\/1 1 2if — 1)w0(M00 +YIM; Yo))
Recursive procedure
For j=0,n

Wi+ = w; + Aw

h; = h(w;, Aw) = 20,A0 + Ac*

Soo(wjr1) = (1 +210) K0 — 60,2-+1Moo

Ay =T+ (WX) + (X)) +- or A;=I+ X))+ (hX))
Xin =4;X; Y =4,Y;

1 :
S (05) = T3 (Sool@5s1) = Sio¥se1 = 2(VIH 2L = 1), (Moo + Y], MY 01))

4. Seismic response analysis of Xiluodu hydropower plant

Several examples, which had been discussed by Wolf and Song (1996), are examined here to illustrate the
accuracy and effectiveness of the proposed method, then the procedure is applied to the impedance com-
putation of the unbounded rock medium in which located Xiluodu underground power plant. Incorporated
with the substructure method, the dynamic response of underground caverns-unbounded rock medium
interaction system to earthquake excitation is analyzed.

4.1. Semi-infinite rod on elastic foundation
A semi-infinite rod on elastic foundation, illustrated in Fig. 1, is used to demonstrate accuracy of the

proposed method for simulating one-dimensional wave propagation problem. As will become apparent,
this is a dispersive system, i.e. the phase velocity is a function of frequency. In addition, a so-called cut-off
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Fig. 1. Semi-infinite rod on elastic foundation.
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0 1 2 3 4 5 0 1 2 3 4 5

Dimensionless Frequency a, Dimensionless Frequency a,

Fig. 2. Dynamic-stiffness coefficient of semi-infinite rod on elastic foundation.

frequency occurs below which no waves propagate. With an analytical solution available given by Wolf and
Song (1996), it is thus a stringent test.

In the finite region adjacent to the structure—unbounded medium interface, artificial damping { = 0.1 is
introduced. The area of the rod is denoted by 4, the modulus of elasticity by E, the mass density by p, and
the static spring stiffness per unit length of the elastic foundation by £,, at the outer boundary a viscous
dashpot is introduced to further reduce the length / of bounded medium.

The normalized results (solid line) are plotted in Fig. 2, in which vy = \/EA/k,, ¢; = \/E/p, ap = wry/c
and //ry = 4. As can be seen from the comparison with the analytical solution (dashed line), the agreement
is excellent.

4.2. Out-of-plane motion of semi-infinite layer

As a two-dimensional wave propagation problem with an analytical solution available, the out-of-plane
motion of a semi-infinite layer of constant depth d shown in Fig. 3 is addressed. Out of the boundaries

R \ >
g
Structure- d — d %
medium UO(Y) %f
interface
" R

Fig. 3. Out-of-plane motion of semi-infinite layer with prescribed displacement.
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Fig. 4. Diagonal term of corner node in dynamic-stiffness matrix of semi-infinite layer.

extending to infinity in the radial direction is fixed and the other is a free surface. The structure-medium
interface coincides with the y-axis.

The material behavior of the homogeneous layer is characterized by the shear module G and mass
density p. The dynamic-stiffness matrix at the structure-medium interface corresponding to a parabolic
variation of the displacement u(y) is calculated. As will become apparent, this system has a cut-off fre-
quency at the layer’s fundamental natural frequency. At this frequency and at each of the higher natural
frequencies, a Love mode starts with a phase velocity of infinity, which decreases for higher frequencies,
converging to the shear-wave velocity for infinite frequency, this case, which often occurs in practice, is thus
a very stringent test.

The dimensionless spring and damping coefficients (solid line) are plotted versus « in Fig. 4, in which,
¢s = +/G/p, ay = wd/cs. The analytical results (Wolf and Song, 1996) are also plotted in dashed line for
comparison and it proves the good accuracy of the method.

4.3. Out-of-plane motion of semi-infinite wedge

As another two-dimensional wave propagation problem shown in Fig. 5, a semi-infinite wedge with an
opening angle o and with a free and a fixed boundary extending to infinity in the radial direction is
investigated to further verify the proposed method. The example describes an out-of-plane motion gov-
erned by the scalar wave equation.

Structure -

medium interface

Fig. 5. Out-of-plane motion of semi-infinite wedge with prescribed displacement.
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Fig. 6. Dynamic-stiffness coefficient of semi-infinite wedge.

The typical constants of the semi-infinite wedge are the shear modulus G and the mass density p, the
structure—medium interface coincides with the arc determined by the radius ry, where the motion as a linear
function of the angle is prescribed. The same problem is also computed by scaled boundary finite-element
method for comparison shown in Fig. 6, which can be seen as exact solution.

This example shows that the proposed method can give very satisfactory result.

4.4. Seismic response of Xiluodu large underground power plant

The accuracy of the proposed method has been verified by the above numerical results and the com-
putational time is reduced greatly compared with the original procedure (Wolf and Song, 1996). And now
the recursive procedure is applied to the seismic analysis of Xiluodu underground power plant caverns.

Xiluodu arch dam is one of the several huge hydropower projects being building or will be built in
seismic active south-west China. The underground power plant cavern is about 448 m long, 74.4 m high and
30 m wide.

3
T
e A
)
Y
S 1 F
<
©
o
ot
c
>
@
E
1 . .
0 4 8 12 16 20
@

Fig. 7. Real part variation with frequency of wall rock dynamic impedance.
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Fig. 8. Imaginary part variation with frequency of wall rock dynamic impedance.

The variation of the dynamic stiffness of unbounded rock medium in Xiluodu zone with frequency is
demonstrated in Figs. 7 and 8, in which the lines marked with A denote diagonal terms of the impedance
matrix, others denote off-diagonal terms.

From Figs. 7 and 8, it can be shown that the real and imaginary part of the impedance vary with fre-
quency slowly in the engineering interested frequency range.

e —
2.354 1613 0.873 0.132

ﬁ

|
Fig. 9. Maximum main stress distribution of underground group caverns (unit: MPa).

—
-0.12 0915 -1.71 -2.505

lo o~

Fig. 10. Minimal main stress distribution of underground group caverns (unit: MPa).
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594 983,579

611 m 582

695 692

Fig. 11. Maximum displacement distribution of underground group caverns (unit: cm).

The underground hydropower plant includes several caverns, which are used for electricity generation,
electric transforming equipment, and two wells for adjusting hydraulic pressure.

Rock material is linear orthotropic with lateral modulus 2.0 x 10'° Pa, vertical modulus 1.5x10'° Pa,
Poisson’s ratio 0.2, mass density 2850 kg/m?. The concrete linings of the cavern are linear isotropic material
with elastic modulus 3.0 x 10'° Pa, Poisson’s ratio 0.17, mass density 2400 kg/m3. A seismic wave recorded
on rock at San Fernando in 1971 is selected.

The maximum and minimal response results of one representative cross section through the time history
are shown in Figs. 9-11.

From Figs. 9 and 10, it is demonstrated that the response of middle cavern is very small compared with
that of side caverns because of the shielding effect of side cavern to seismic wave.

5. Conclusion

A high performance recursive damping-solvent method is presented. The method in conjunction with
substructure method for the seismic analysis of large underground caverns can results in a great reduction
of computational costs with high accuracy and efficiency. It can be used as the appropriate tool for the
dynamic analysis of various underground structures.
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